¿Plasma y LCD?

La tecnologia de Plasma

Tecnologia LCD

Ventajas de las Pantallas LCD

Diferencias Basicas Entre Pantallas de Plasma y LCD

 

¿PANTALLAS DE PLASMA Y LCD?

Sin duda el viejo CRT (Cathode Ray Tube) o cinescopio de televisiones y monitores de computadora sigue teniendo una abrumadora presencia en hogares y oficinas. Pero en los últimos años, las tecnologías de video digital han permitido el desarrollo de mejores dispositivos. Tal es el caso de las pantallas de LCD (Pantalla de Cristal Líquido. Liquid Crystal Display, por sus siglas en inglés) y plasma, así como los recientes avances en proyectores, que aunque cada vez es más común encontrarles a precios más reducidos en cualquier tienda de electrónica o supermercado, poco se conocen sus características y diferencias entre unos y otros.

Dentro de los cinescopios de televisiones y monitores, opera un haz de electrones, o partículas cargadas negativamente, que excitan a los átomos de fósforo que se encuentran en un extremo del tubo de vidrio. Esto hace que los átomos de fósforo brillen y, por ende, la imagen que apreciamos en ese tipo de dispositivos sea resultado de iluminar distintas áreas de la cobertura interna de fósforo con diversas intensidades. Durante décadas, esta fue una excelente tecnología para apreciar imágenes de buena calidad con la desventaja del tamaño de cinescopio, pues entre más grande se desea la imagen, más largo deberá ser el tubo de rayos catódicos, lo que implica aparatos pesados y difíciles de colocar en cualquier sitio.

Inicio

 

La tecnología de plasma

Una pantalla de plasma posee muchos elementos comunes con una televisión convencional. En estas pantallas se iluminan pequeñas áreas fosforescentes para crear la imagen. Cada punto en la pantalla, o píxel, lo integran tres luces o celdas: roja, verde y azul. Al igual que en los cinescopios, las plasmas varían las intensidades de luz en cada punto para generar una buena gama de colores. Pero… ¿por qué se les llama “plasma”?

Cada elemento fosforescente en la pantalla posee un componente básico: un plasma o gas consistente en iones, es decir, átomos cargados eléctricamente y en electrones o partículas cargadas negativamente. En una situación normal, el gas tiene carga eléctrica cero, ya que los electrones negativos en cada átomo se equilibran con los protones cargados positivamente. Sin embargo, al hacer pasar corriente eléctrica, los electrones libres sufren colisiones con átomos, liberando a otros electrones. Cuando un átomo pierde un electrón, su carga se convierte en positiva, es decir, se transforma en un ion. Al momento de activar la pantalla de plasma, las partículas negativas se dirigen hacia la sección cargada positivamente, y las partículas positivas van hacia la negativa. En estos intercambios, los átomos del gas se excitan y liberan fotones de energía.

Cada pantalla de plasma posee miles de pequeñas celdas que almacenan gases nobles como el xenón y el neón. Al excitarse eléctricamente, esos gases liberan fotones de luz ultravioleta, lo cual es invisible al ojo humano, y como cada celda también posee material fosforescente, éste se pigmenta ya sea en rojo, verde o azul, de tal forma, que los fotones ultravioleta liberados por la excitación del gas noble, a su vez, estimulan a los átomos fosforescentes. Por la combinación de intensidades de luz en cada celda de las tres que componen cada píxel, es factible generar una amplia gama de colores.

La principal ventaja de una pantalla de plasma es tener un área de visualización bastante grande con un fondo o grosor de aparato relativamente delgado. Además, ya que cada píxel se ilumina individualmente, la imagen tiene un excelente brillo y puede apreciarse desde casi cualquier ángulo. En sentido inverso, las desventajas de una pantalla de plasma son principalmente que no se fabrican en pequeños tamaños y el brillo, generalmente, llega a ser menor en comparación con otras tecnologías como la de LCD.

Pantallas de Plasma

Inicio

 

 

Tecnología LCD

La siglas LCD (liquid cristal display) son el último grito en tecnología. Desde los 70's las pantallas de cristal líquido se han ido extendiendo a calculadoras, relojes, televisores, portátiles, cámaras digitales, etc, hasta llegar a los PCs.

Los problemas iniciales del cristal líquido han ido menguando a gran velocidad, gracias, fundamentalmente, a la tecnología TFT (Thin Film Transistor), que utiliza semiconductores en lugar de electrodos para cambiar el estado (encendido o apagado) de cada punto de la pantalla, reduciendo los problemas de resolución, ángulo de visión y pureza de color (contraste). La mayoría de las pantallas planas actuales utilizan esta tecnología.

Las pantallas de LCD (cristal líquido) están presentes en un sinnúmero de aparatos, desde la limitada imagen que muestra una calculadora de bolsillo hasta televisores con pantallas para proyección de 50 o más pulgadas. Se componen de miles de pequeños cristales líquidos, que no son sólidos ni líquidos en realidad, sino un estado intermedio. Una característica de estos materiales es que cambian su estado físico y forma por variaciones de temperatura o bajo la acción de un campo eléctrico. Según la disposición molecular y el ordenamiento de las partículas del cristal líquido se les clasifica en nemáticos, esméticos y colestéricos. Las pantallas de LCD funcionan con los del tipo nemático trenzado, cuyas partículas forman una espiral que se puede enderezar al paso de una carga eléctrica.

A diferencia de las pantallas de plasma, en las pantallas de LCD, cada cristal líquido no emite luz por sí mismo. Las pantallas de LCD pueden ser reflectivas, lo que implica que muestran algo en función de la luz que proviene de una fuente externa o, bien, tienen una fuente de luz en el fondo. Así es como operan la mayoría de pantallas LCD presentes en computadoras portátiles, monitores de equipos de escritorio y grandes pantallas de video.

En equipos de bajo costo, como las calculadoras, se emplean cristales líquidos de “plano común”, ya que siempre muestran el mismo tipo de información.

En las pantallas de computadora o de mayor tamaño se usan LCDs de matriz pasiva y de matriz activa. En el primer caso, se hace pasar corriente eléctrica a través de una malla de conductores arriba y debajo de la placa de cristal líquido. De esta forma, en el punto donde se encuentran las cargas eléctricas, el pequeño cristal líquido se “destuerce”, permitiendo el paso de la luz que viene del fondo. La tecnología de matriz pasiva tiene, sin embargo, dos serias desventajas: el tiempo de respuesta de la señal y el poco control del voltaje. Lo primero implica que cuando se hacen movimientos rápidos en la imagen, por ejemplo, al trasladar el apuntador del ratón de un lugar a otro, se aprecian “fantasmas” en la pantalla, siguiendo al apuntador. Y dado también que el control de voltaje es impreciso, los pixeles que rodean a un punto activado pueden estar recibiendo algo de carga eléctrica, traduciéndose en imágenes con poco contraste. Por su parte, las pantallas LCD de matriz activa poseen transistores y capacitores para cada punto o píxel, lo que facilita un mayor control de qué cristal líquido se activa y cuál no, además de mayor precisión en el grado de polarización de cada cristal, llegando hasta 256 grados de brillantez por píxel.

Para que la pantalla de LCD muestre colores y variantes de los mismos, se requiere que cada píxel contenga tres subpixeles, uno para cada color básico (rojo, verde y azul). Si en la matriz activa cada subpíxel de cristal líquido puede tener 256 niveles distintos, la cantidad de colores posibles es de 2563, es decir, 16.8 millones. Y tal gama requiere de una importante cantidad de componentes electrónicos en las pantallas de matriz activa. Tomemos por ejemplo una convencional computadora portátil: si tiene resolución de 1024 x 768, cada punto con tres subpixeles, tan sólo la pantalla posee más de dos millones trescientos mil transistores.

 

Los problemas iniciales del cristal líquido han ido menguando a gran velocidad, gracias, fundamentalmente, a la tecnología TFT (Thin Film Transistor), que utiliza semiconductores en lugar de electrodos para cambiar el estado (encendido o apagado) de cada punto de la pantalla, reduciendo los problemas de resolución, ángulo de visión y pureza de color (contraste). La mayoría de las pantallas planas actuales utilizan esta tecnología.

 

Monitores LCD

Inicio


   

VENTAJAS DE LAS PANTALLAS LCD

CON TECNOLOGIA TFT

Se supone que las pantallas TFT cansan menos la vista y esto es de interés para todos los que pasamos horas y horas delante de una computadora.

La fatiga visual la provoca las oscilaciones de imagen, la mayoría de pantallas de TFT tienen casi una ausencia total de estas oscilaciones (flicker) gracias a esto se produce en menor medida la fatiga visual.

Las desventajas aunque ya son menos cada día, son el precio, el ángulo de visión y la gama y pureza de los colores.

Las pantallas TFT se ven peor de lado (su ángulo de visión ronda sólo los 140º), la gama de colores se hace insuficiente para trabajos fotográficos y el sistema de iluminación interna con fluorescentes hace que el monitor devuelva una menor precisión en el color (una zona muy clara u oscura afecta a las áreas contiguas).

Inicio

 

 

Diferencias básicas entre pantallas de plasma y LCD

Área de visión

Son pocas las pantallas de plasma de tamaño pequeño. Las de LCD son populares en aplicaciones como sistemas de entretenimiento móvil y teléfonos celulares. En el otro extremo ambos tipos pueden rebasar las 60 pulgadas .

Dimensiones y peso de equipo

Tanto plasmas como LCD son delgadas y ligeras, en comparación con las antiguas pantallas de CRT de similares dimensiones.

Ángulo de visión

Es mayor en el caso de las plasmas.

Vida útil

Superior a las 10 mil horas.

Color

LCD tiene imágenes más claras y colores más vivos. Las plasmas tienen mayor diversidad y precisión de color.

Brillantez

Superior en LCD.

Negros

Las plasmas definen de mejor manera los negros, mientras las pantallas de LCD muestran tonos oscuros de gris.

Nivel de contraste

Superior en plasma.

Inicio

Extraido de:
http://www.enterate.unam.mx/Articulos/2006/enero/plasma.htm

Comentarios y Sugerencias: